Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Methods Mol Biol ; 2741: 363-380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217663

RESUMEN

The activity mechanism and function of bacterial base-pairing small non-coding RNA regulators (sRNAs) are largely shaped by their main interacting cellular partners, i.e., proteins and mRNAs. We describe here an MS2 affinity chromatography-based procedure adapted to unravel the sRNA interactome in nitrogen-fixing legume endosymbiotic bacteria. The method consists of tagging of the bait sRNA at its 5'-end with the MS2 aptamer followed by pulse overexpression and immobilization of the chimeric transcript from cell lysates by an MS2-MBP fusion protein conjugated to an amylose resin. The sRNA-binding proteins and target mRNAs are further profiled by mass spectrometry and RNAseq, respectively.


Asunto(s)
Bacterias Fijadoras de Nitrógeno , ARN Pequeño no Traducido , Rhizobium , ARN Pequeño no Traducido/genética , Rhizobium/genética , Rhizobium/metabolismo , Nitrógeno/metabolismo , Bacterias/genética , Bacterias Fijadoras de Nitrógeno/genética , Cromatografía de Afinidad/métodos , ARN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica
2.
Biology (Basel) ; 12(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37508388

RESUMEN

Desmanthus spp. are legumes with the ability to associate with diverse α-proteobacteria-a microsymbiont-in order to establish nitrogen-fixing root nodules. A previous investigation from our laboratory revealed that the main bacteria associated with Desmanthus paspalaceus in symbiosis in central Argentina (Province of Santa Fe) were quite diverse and belonged to the genera Rhizobium and Mesorhizobium. To achieve a more extensive view of the local microsymbionts associated with Desmanthus spp., we sampled three different sites in Jujuy and Salta, in northwest Argentina. Matrix-assisted Laser-Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF) typing, 16S-rDNA analysis, and genome sequencing demonstrated that the dominant root-nodule microsymbionts belonged to the genus Sinorhizobium, with some sequenced genomes related to Sinorhizobium mexicanum, Sinorhizobium chiapanecum, and Sinorhizobium psoraleae. An analysis of nodA and nodC markers indicated that, in some of the isolates, horizontal gene transfer appeared to be responsible for the lack of congruence between the phylogenies of the chromosome and of the symbiotic region. These results revealed diverse evolutionary strategies for reaching the current Desmanthus-microsymbiont diversity. What is remarkable beside their observed genetic diversity is that the tolerance profiles of these isolates to abiotic stresses (temperature, salt concentration, pH) were quite coincident with the separation of the sinorhizobia according to place of origin, suggesting possible ecoedaphic adaptations. This observation, together with the higher aerial dry-weight matter that some isolates generated in Desmanthus virgatus cv. Marc when compared to the biomass generated by the commercial strain Sinorhizobium terangae CB3126, distinguish the collected sinorhizobia as constituting valuable germplasm for evaluation in local fields to select for more efficient symbiotic pairs.

3.
PLoS One ; 18(5): e0285505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200389

RESUMEN

Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbiosis with leguminous plants. Current evidence shows that rhizobia carry in most cases a variable number of plasmids, containing genes necessary for symbiosis or free-living, a common feature being the presence of several plasmid replicons within the same strain. For many years, we have been studying the mobilization properties of pSmeLPU88b from the strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the characterization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified in silico: one belonging to the repABC type, and the other to the repC. The replication modules presented high DNA identity to the replication modules from plasmid pMBA9a present in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recombinases and with toxin-antitoxin systems were found downstream of the repABC system. It is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC operon. By cloning each replication system in suicide plasmids, we demonstrated that each of them can support plasmid replication in the S. meliloti genetic background, but with different stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems results in the loss of the parental module, both obtained plasmids can coexist together.


Asunto(s)
Rhizobium , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , Plásmidos/genética , ADN Bacteriano/genética , Replicón/genética , Replicación del ADN/genética , Rhizobium/genética , Proteínas Bacterianas/genética
4.
J Proteome Res ; 22(6): 1682-1694, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37017314

RESUMEN

To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.


Asunto(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteómica , Proteoma/genética , Proteoma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Simbiosis/genética
5.
J Biotechnol ; 362: 12-23, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36535417

RESUMEN

Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered to granules composed of peat prill or finely ground peat moss. During the production of peat-based inoculants, a series of physiological changes occur that result in an increased capability of the rhizobia to survive on the seeds. The number of viable rhizobia on preinoculated seeds at the point of sale, however, is often a limiting factor, as is the inefficiency of the inoculant bacteria to compete with the local rhizobia for the host colonization. In the present work, we used STM-seq for the genome-wide screening of Ensifer meliloti mutants affected in the survival during the maturation of peat-based inoculant formulations. Through this approach, we were able to identify a set of mutants whose behavior suggests that persistence in peat inoculants involves a complex phenotype that is connected to diverse cellular activities, mainly related to satisfying the requirements of bacterial nutrition (e.g., carbon sources, ions) and to coping with specific stresses (e.g., oxidative, mutational). These results also provide a base knowledge that could be used to more completely understand the survival mechanisms used by rhizobia during the maturation of peat-based inoculants, as well as for the design and implementation of practical strategies to improve inoculant formulations.


Asunto(s)
Rhizobium , Sinorhizobium meliloti , Suelo , Sinorhizobium meliloti/genética , Simbiosis/genética
6.
Curr Microbiol ; 79(9): 261, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852662

RESUMEN

Plant pathogens, such as fungi, bacteria, and viruses, can cause serious damage to crops and significantly reduce yield and quality. Bacterial diseases of agronomic crops, however, have been little studied. The present study aims to isolate and identify bacteria recovered from symptomatic maize (Zea mays) leaves collected from field samples in the province of Cordoba, Argentina. Bacterial strains were identified using whole-cell matrix-assisted laser-desorption-ionization-time-off light mass spectrometry and 16S rDNA sequencing. Members of the genera Exiguobacterium and Curtobacterium were dominant in the studied vegetal material. Two strains (RC18-1/2 and RC18-3/1) were selected for further studies. The pathogenicity test showed that plants inoculated with Curtobacterium sp. RC18-1/2 exhibited the same symptoms as those previously detected in the field. To our knowledge, this study provides the first evidence about the isolation of a Curtobacterium pathogenic strain in maize. Effective crop disease management will require the use of integrated strategies, such as resistant cultivars and/or biocontrol agents.


Asunto(s)
Actinomycetales , Zea mays , Actinomycetales/genética , Argentina , Bacterias , ADN Ribosómico/genética , Hongos/genética , Plantas , Zea mays/microbiología
7.
Braz J Microbiol ; 53(3): 1633-1643, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35704174

RESUMEN

The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.


Asunto(s)
Rhizobium , Simbiosis , Ácidos/farmacología , Medicago sativa/metabolismo , Fijación del Nitrógeno/genética , Rhizobium/genética , Simbiosis/genética
8.
Ann Med ; 54(1): 858-866, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35318876

RESUMEN

OBJECTIVES: The goal of this study is to analyse hospital costs and length of stay of patients admitted to psychiatric units in hospitals in a European region of the Mediterranean Arc. The aim is to identify the effects of comorbidities and other variables in order to create an explanatory cost model. METHODS: In order to carry out the study, the Ministry of Health was asked to provide data on access to the mental health facilities of all hospitals in the region. Among other questions, this database identifies the most important diagnostic variables related to admission, like comorbidities, age and gender. The method used, based on the Manning-Mullahy algorithm, was linear regression. The results were measured by the statistical significance of the independent variables to determine which of them were valid to explain the cost of hospitalization. RESULTS: Psychiatric inpatients can be divided into three main groups (psychotic, organic and neurotic), which have statistically significant differences in costs. The independent variables that were statistically significant (p <.05) and their respective beta and confidence intervals were: psychotic group (19,833.0 ± 317.3), organic group (9,878.4 ± 276.6), neurotic group (11,060.1 ± 287.6), circulatory system diseases (19,170 ± 517.6), injuries and poisoning (21,101.6 ± 738.7), substance abuse (20,580.6 ± 514, 6) and readmission (19,150.9 ± 555.4). CONCLUSIONS: Unlike most health services, access to psychiatric facilities does not correlate with comorbidities due to the specific nature of this specialization. Patients admitted to psychosis had higher costs and a higher number of average staysKEY MESSAGESThe highest average hospital expenditure occurred in patients admitted for psychotic disorders.Due to the particularities of psychiatry units and unlike other medical specialties, the number of comorbidities did not influence the number of hospital stays or hospital expenditure.Apart from the main diagnostic group, the variables that were useful to explain hospital expenditure were the presence of poisoning and injuries as comorbidity, diseases of circulatory system as comorbidity, history of substance abuse and readmission.


Asunto(s)
Trastornos Mentales , Trastornos Relacionados con Sustancias , Costos de Hospital , Hospitales , Humanos , Tiempo de Internación , Trastornos Mentales/epidemiología , Morbilidad
9.
Environ Microbiol ; 24(3): 1247-1262, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34725905

RESUMEN

Antimicrobial resistance represents a major global health concern and environmental bacteria are considered a source of resistance genes. Carbapenems are often used as the last antibiotic option to treat multidrug-resistant bacteria. Metallo-ß-lactamases (MBLs) are able to render resistance to almost all ß-lactam antibiotics, including carbapenems. Unfortunately, there are no inhibitors against MBLs for clinical use. Subclass B2 MBLs are the only enzymes working as strict carbapenemases, under-represented, encoded in chromosome genes and only functional as mono-zinc enzymes. Despite current efforts in MBLs inhibitor development, B2 carbapenemase activity is especially difficult to suppress, even in vitro. In this study we characterized BioF, a novel subclass B2 MBL identified in a new environmental Pseudomonas sp. strain isolated from an on-farm biopurification system (BPS). Although blaBioF is most likely a chromosomal gene, it is found in a genomic island and may represent a step previous to the horizontal transmission of B2 genes. The new B2 MBL is active as a mono-zinc enzyme and is a potent carbapenemase with incipient activity against some cephalosporins. BioF activity is not affected by excess zinc and is only inhibited at high metal chelator concentrations. The discovery and characterization of B2 MBL BioF as a potent carbapenemase in a BPS bacterial isolate emphasizes the importance of exploring antibiotic resistances existing in the environmental microbiota under the influence of human activities before they could emerge clinically.


Asunto(s)
Pseudomonas , beta-Lactamasas , Antibacterianos/farmacología , Carbapenémicos , Granjas , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas/genética , beta-Lactamasas/genética
10.
Front Plant Sci ; 12: 642576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643369

RESUMEN

One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.

11.
J Biotechnol ; 329: 80-91, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33539896

RESUMEN

The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.


Asunto(s)
Sinorhizobium meliloti , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medicago sativa/metabolismo , Fijación del Nitrógeno , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis/genética
12.
Food Technol Biotechnol ; 59(4): 519-529, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35136375

RESUMEN

RESEARCH BACKGROUND: In recent decades, laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researchers due to their wide range of biotechnological and industrial applications. Laccases can oxidize a variety of organic and inorganic compounds, making them suitable as biocatalysts in biotechnological processes. Even though the most traditionally used laccases in the industry are of fungal origin, bacterial laccases have shown an enormous potential given their ability to act on several substrates and in multiple conditions. The present study aims to characterize a plasmid-encoded laccase-like multicopper oxidase (LMCO) from Ochrobactrum sp. BF15, a bacterial strain previously isolated from polluted soil. EXPERIMENTAL APPROACH: We used in silico profile hidden Markov models to identify novel laccase-like genes in Ochrobactrum sp. BF15. For laccase characterization, we performed heterologous expression in Escherichia coli, purification and activity measurement on typical laccase substrates. RESULTS AND CONCLUSIONS: Profile hidden Markov models allowed us to identify a novel LMCO, named Lac80. In silico analysis of Lac80 revealed the presence of three conserved copper oxidase domains characteristic of three-domain laccases. We successfully expressed Lac80 heterologously in E. coli, allowing us to purify the protein for further activity evaluation. Of thirteen typical laccase substrates tested, Lac80 showed lower activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), pyrocatechol, pyrogallol and vanillic acid, and higher activity on 2,6-dimethoxyphenol. NOVELTY AND SCIENTIFIC CONTRIBUTION: Our results show Lac80 as a promising laccase for use in industrial applications. The present work shows the relevance of bacterial laccases and highlights the importance of environmental plasmids as valuable sources of new genes encoding enzymes with potential use in biotechnological processes.

13.
Nucleic Acids Res ; 49(D1): D452-D457, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237313

RESUMEN

The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new levels (Clan > Family) requiring sequence similarity and describing repeat motifs in collaboration with Pfam. Data growth has been addressed with improved mechanisms for browsing the classification hierarchy. A new UniProt-centric view unifies the increasingly frequent annotation of structures from identical or similar sequences. This update of RepeatsDB aligns with our commitment to develop a resource that extracts, organizes and distributes specialized information on tandem repeat protein structures.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Secuencias Repetitivas de Aminoácido , Secuencias Repetidas en Tándem , Ontología de Genes , Células HEK293 , Células HeLa , Humanos , Reproducibilidad de los Resultados , Estadística como Asunto , Interfaz Usuario-Computador
14.
Gene ; 768: 145267, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33122079

RESUMEN

Strain P10 130, an isolated Bradyrhizobium strain from Argentina which promotes the growth of the leguminous plant Desmodium incanum by different mechanisms was previously selected as the best candidate for D. incanum inoculation based on broader selective criteria. A close relationship between this strain and B. yuanmingense was determined by MALDI BioTyper identification and 16S rRNA gene phylogenetic analysis. This study aimed to analyse the genome sequence of B. yuanmingense P10 130 in order to deepen our knowledge regarding its plant growth-promoting traits and to establish its phylogenetic relationship with other species of Bradyrhizobium genus. The genome size of strain P10 130 was estimated to be 7.54 Mb that consisted of 65 contigs. Genome Average Nucleotide Identity (ANI) analysis revealed that B. yuanmingense CCBAU 10071 T was the closest strain to P10 130 with ca. 96% identity. Further analysis of the genome of B. yuanmingense P10 130 identified 20 nod/nol/NOE, 14 nif/18 fix, 5 nap/5 nor genes, which may be potentially involved in nodulation, nitrogen fixation, and denitrification process respectively. Genome sequence of B. yuanmingense P10 130 is a valuable source of information to continue the research of its potential industrial production as a biofertilizer of D. incanum.


Asunto(s)
Bradyrhizobium/genética , Fabaceae/crecimiento & desarrollo , Genoma Bacteriano/genética , Fijación del Nitrógeno/genética , Composición de Base/genética , ADN Bacteriano/genética , Fabaceae/microbiología , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología
15.
mBio ; 11(4)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694138

RESUMEN

Prokaryote genomes exhibit a wide range of GC contents and codon usages, both resulting from an interaction between mutational bias and natural selection. In order to investigate the basis underlying specific codon changes, we performed a comprehensive analysis of 29 different prokaryote families. The analysis of core gene sets with increasing ancestries in each family lineage revealed that the codon usages became progressively more adapted to the tRNA pools. While, as previously reported, highly expressed genes presented the most optimized codon usage, the singletons contained the less selectively favored codons. The results showed that usually codons with the highest translational adaptation were preferentially enriched. In agreement with previous reports, a C bias in 2- to 3-fold pyrimidine-ending codons, and a U bias in 4-fold codons occurred in all families, irrespective of the global genomic GC content. Furthermore, the U biases suggested that U3-mRNA-U34-tRNA interactions were responsible for a prominent codon optimization in both the most ancestral core and the highly expressed genes. A comparative analysis of sequences that encode conserved (cr) or variable (vr) translated products, with each one being under high (HEP) and low (LEP) expression levels, demonstrated that the efficiency was more relevant (by a factor of 2) than accuracy to modeling codon usage. Finally, analysis of the third position of codons (GC3) revealed that in genomes with global GC contents higher than 35 to 40%, selection favored a GC3 increase, whereas in genomes with very low GC contents, a decrease in GC3 occurred. A comprehensive final model is presented in which all patterns of codon usage variations are condensed in four distinct behavioral groups.IMPORTANCE The prokaryotic genomes-the current heritage of the most ancient life forms on earth-are comprised of diverse gene sets, all characterized by varied origins, ancestries, and spatial-temporal expression patterns. Such genetic diversity has for a long time raised the question of how cells shape their coding strategies to optimize protein demands (i.e., product abundance) and accuracy (i.e., translation fidelity) through the use of the same genetic code in genomes with GC contents that range from less than 20 to more than 80%. Here, we present evidence on how codon usage is adjusted in the prokaryotic tree of life and on how specific biases have operated to improve translation. Through the use of proteome data, we characterized conserved and variable sequence domains in genes of either high or low expression level and quantitated the relative weight of efficiency and accuracy-as well as their interaction-in shaping codon usage in prokaryotes.


Asunto(s)
Archaea/genética , Bacterias/genética , Uso de Codones , Codón/genética , Código Genético , ARN de Transferencia/genética , Archaea/clasificación , Bacterias/clasificación , Composición de Base , Mutación , Biosíntesis de Proteínas , Proteoma
16.
Methods Mol Biol ; 1737: 31-45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484585

RESUMEN

So far, every sequenced bacterial transcriptome encompasses hundreds of small regulatory noncoding RNAs (sRNAs). From those sRNAs that have been already characterized, we learned that their regulatory functions could span over almost every bacterial process, mostly acting at the posttranscriptional control of gene expression (Wagner and Romby, Adv Genet 90:133-208, 2015). Canonical molecular mechanisms of sRNA action have been described to rely on both sequence and/or structural traits of the RNA molecule. As for protein-coding genes, the conservation of sRNAs among species suggests conserved and adjusted functions across evolution. Knowing the phylogenetic distribution of an sRNA gene and how its functional traits have evolved may help to get a broad picture of its biological role in each single species. Here, we present a simple computational workflow to identify close and distant sRNA homologs present in sequenced bacterial genomes, which allows defining novel sRNA families. This strategy is based on the use of Covariance Models (CM) and assumes the conservation of sequence and structure of functional sRNA genes throughout evolution. Moreover, by carefully inspecting the conservation of the close genomic context of every member of the RNA family and how the patterns of microsynteny follow the path of species evolution, it is possible to define subgroups of sRNA orthologs, which in turn enables the definition of RNA subfamilies.


Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Genoma Bacteriano , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN/métodos , Transactivadores/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Guías como Asunto , Anotación de Secuencia Molecular , Filogenia
17.
J Biotechnol ; 267: 55-62, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29292130

RESUMEN

A growing body of evidence has reinforced the central role of microbiomes in the life of sound multicellular eukaryotes, thus more properly described as true holobionts. Though soil was considered a main source of plant microbiomes, seeds have been shown to be endophytically colonized by microorganisms thus representing natural carriers of a selected microbial inoculum to the young seedlings. In this work we have investigated the type of culturable endophytic bacteria that are carried within surface-sterilized alfalfa seeds. MALDI-TOF analysis revealed the presence of bacteria that belonged to 40 separate genera, distributed within four taxa (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes). Nonsymbiotic members of the Rhizobiaceae family were also found. The evaluation of nine different in-vitro biochemical activities demonstrated isolates with complex combinations of traits that, upon a Principal-Component-Analysis, could be classified into four phenotypic groups. That isolates from nearly half of the genera identified had been able to colonize alfalfa plants grown under axenic conditions was remarkable. Further analyses should be addressed to investigating the colonization mechanisms of the alfalfa seeds, the evolutionary significance of the alfalfa-seed endophytes, and also how after germination the seed microbiome competes with spermospheric and rhizospheric soil bacteria to colonize newly emerging seedlings.


Asunto(s)
Endófitos/genética , Medicago sativa/microbiología , Microbiota/genética , Filogenia , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Endófitos/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Medicago sativa/genética , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Plantones/microbiología , Semillas/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300936

RESUMEN

Rapid dissemination and emergence of novel antibiotic resistance genes among bacteria are rising problems worldwide. Since their discovery in clinical isolates in the late 1980s, class 1 integrons have been found in a wide range of bacterial genera and have been extensively studied as contributors to dissemination of antibiotic resistance. The present study aimed to investigate the presence and structure of class 1 integrons in plasmid-carrying bacterial isolates obtained from a biopurification system used for decontamination of pesticide-contaminated water as well as their possible role as reservoir of antimicrobial resistance gene cassettes. A total of 35 representative isolates were screened for the presence of class 1 integron integrase encoded by intI1. PCR and DNA sequencing revealed the presence of six class 1 integrons with four variable regions: 5΄CS-aadA1b-3΄CS, 5΄CS-aadA2-3΄CS, 5΄CS-aadA11cΔ-3΄CS and 5΄CS-dfrB3-aadA1di-catB2-aadA6k-3΄CS, the last two being unseen arrays of antimicrobial resistance gene cassettes associated with novel environmental alleles of intI1. These four class 1 integrons were identified as being present in four different genera, including Ochrobactrum, and Variovorax, where class 1 integrons have not been previously reported. The results provide evidence of the biopurification systems as a tank of class 1 integron carrying strains and novel environmental class 1 integron integrases associated with antimicrobial resistance gene cassette arrays.


Asunto(s)
Bacterias/genética , Integrones , Microbiología del Suelo , Animales , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Granjas , Integrasas/genética , Integrasas/metabolismo , Ganado , Estiércol/microbiología , Plásmidos/genética
19.
Int J Syst Evol Microbiol ; 68(1): 14-20, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29095137

RESUMEN

Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040T (=LMG 29660T=DSM 103137T) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and ß-galactosidase activities.


Asunto(s)
Complejo Burkholderia cepacia/clasificación , Fibrosis Quística/microbiología , Filogenia , Microbiología del Suelo , Agricultura , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Humanos , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Esputo
20.
Microbiology (Reading) ; 164(1): 88-98, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29214973

RESUMEN

In the N2-fixing symbiont of alfalfa root nodules, Sinorhizobium meliloti 2011, the mmgR gene encodes a 77 nt small untranslated RNA (sRNA) that negatively regulates the accumulation of polyhydroxybutyrate (PHB) when the bacterium is grown under conditions of surplus carbon (C) in relation to nitrogen (N). We previously showed that the expression of mmgR is primarily controlled at the transcriptional level and that it depends on the cellular N status, although the regulatory mechanism and the factors involved were unknown. In this study, we provide experimental data supporting that: (a) mmgR is induced upon N limitation with the maximum expression found at the highest tested C/N molar ratio in the growth medium; (b) a conserved heptamer TTGTGCA located between the -35 and -10 mmgR promoter elements is necessary and sufficient for induction by N limitation; (c) induction of mmgR requires the N-status regulator NtrC; (d) under C limitation, mmgR transcription is repressed by AniA, a global regulator of C flow; (e) the mmgR promoter contains a conserved dyadic motif (TGC[N3]GCA) partially overlapping the heptamer TTGTGCA, which was also found in the promoters of the PHB-related genes phaP1, phaP2, phaZ and phaR (aniA) of S. meliloti and other alpha-proteobacteria. Taken together, these results suggest that the mmgR promoter would integrate signals from the metabolism of C and N through - at least - the global regulators NtrC and AniA, to provide an optimal level of the MmgR sRNA to fine-tune gene expression post-transcriptionally according to varying C and N availability.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Pequeño no Traducido/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Sitios de Unión , Carbono/metabolismo , Ciclo del Carbono/genética , Secuencia Conservada , Técnicas de Inactivación de Genes , Genes Reguladores/genética , Genes Reguladores/fisiología , Medicago sativa/microbiología , Mutación , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Regiones Promotoras Genéticas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Alineación de Secuencia , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...